数列求和公式_等比数列求和公式是什么?

05-28

等比数列求和

自然数平方数列和立方数列求和公式怎么推导

平方和的推导利用立方公式:

(n+1)³-n³=3n²+3n+1 ①

记Sn=1²+2²+....+n², Tn=1+2+..+n=n(n+1)/2

对①式从1~n求和,得:

∑(n+1)³-n³=3∑n²+3∑n+∑1

(n+1)³-1=3Sn+3Tn+n

这就得到了Sn=n(n+1)(2n+1)/6

类似地,求立方和利用4次方公式:

(n+1)^4-n^4=4n³+6n²+4n+1

例如:

2^3= (1+1)^3 =1^3+3*1^2+3*1+1

3^3= (2+1)^3 =2^3+3*2^2+3*2+1

4^3= (3+1)^3 =3^3+3*3^2+3*3+1

. . . . . .

(n+1)^3=(n+1)^3=n^3+3*n^2+3n+1

去掉中间步,将右边第一项移到左边得:

2^3 - 1^3=3*1^2+3*1+1

3^3 - 2^3=3*2^2+3*2+1

4^3 - 3^3=3*3^2+3*3+1

. . . . . .

(n+1)^3-n^3=+3*n^2+3n+1

两边分别相加

(n+1)^3-1^3=3(1^2+2^2+3^2+4^2+...... +n^2)+3(1+2+3+4+...+n)+n

1^2+2^2+3^2+4^2+...... +n^2=[(n+1)^3-1^3-3(1+2+3+4+...+n)-n]/3

整理即得

1^2+2^2+3^2+4^2+...... +n^2=n*(n+1)(2n+1)/6

扩展资料:

常见数列求和的方法:

1、公式法:

等差数列求和公式:

Sn=n(a1+an)/2=na1+n(n-1)d/2

等比数列求和公式:

Sn=na1(q=1)Sn=a1(1-q^n)/(1-q)=(a1-an×q)/(1-q) (q≠1)

2、错位相减法

适用题型:适用于通项公式为等差的一次函数乘以等比的数列形式 { an }、{ bn }分别是等差数列和等比数列.

Sn=a1b1+a2b2+a3b3+...+anbn

例如:an=a1+(n-1)d bn=a1·q^(n-1) Cn=anbn Tn=a1b1+a2b2+a3b3+a4b4.+anbn

qTn= a1b2+a2b3+a3b4+...+a(n-1)bn+anb(n+1)

Tn-qTn= a1b1+b2(a2-a1)+b3(a3-a2)+...bn[an-a(n-1)]-anb(n+1)

Tn(1-q)=a1b1-anb(n+1)+d(b2+b3+b4+...bn) =a1b1-an·b1·q^n+d·b2[1-q^(n-1)]/(1-q) Tn=上述式子/(1-q)

3、裂项法

适用于分式形式的通项公式,把一项拆成两个或多个的差的形式,即an=f(n+1)-f(n),然后累加时抵消中间的许多项。

参考资料来源:百度百科-数列求和

斐波那契数列求和公式

1、奇数项求和


扩展资料:

斐波那契数列的应用:

1、生物应用

斐波那契数还可以在植物的叶、枝、茎等排列中发现。例如,如果选择树干上的一片叶子,将其计数为零,然后按顺序(假设没有损坏)计数叶子,直到达到适合这些叶子的位置,它们之间的叶子数基本上是斐波那契数。从一个位置移动到下一个位置的叶子称为周期。

叶子在一个周期内旋转的圈数也是斐波那契数。一个循环中叶数与叶旋转圈数之比称为叶序比(源自希腊语,意为叶的排列)。大多数叶序比是斐波那契数。

2、自然界中的应用

自然界中的斐波那契数列斐波那契数列在自然科学的其他分支,有许多应用。例如,树木的生长,由于新的枝条,往往需要一段时间的“休息”时间来自己生长,才能使新的枝条发芽。因此,例如,幼苗每隔一年生长一个新的枝条。

第二年,新树枝“休息”,老树枝仍在发芽。之后,老枝和老枝“休憩”一年的同时发芽,而当年的新枝则在第二年“休息”。这样,一棵树每年的分枝数就构成了斐波那契数列。这个定律是生物学中著名的“鲁德维格定律”。

参考资料来源:百度百科-斐波那契数

数列求和 i的平方相加(1+4+9+16+.......n的平方)...

1²+2²+3²+...+n²=n(n+1)(2n+1)/6

证明如下:排列组合法)

由于

扩展资料

1、一般的数列求和问题应从通项公式入手,若无通项公式,应先求通项公式,然后根据通项公式的特点选择合适的方法求和。

2、解决非等差、等比数列的求和问题主要有两种方法,一为将非等差、等比数列问题转化为等差、等比数列问题;二为不能转化为等差、等比数列的问题,可以考虑利用倒序相加法、错位相减法、裂项法、分组求和法等进行求和。

3、对于等比数列的求和问题,要注意判断公比是否为1,然后进行分类讨论.等差数列的求和公式有多种形式,要注意根据已知条件选择合适的求和公式。

等比数列求和公式推导 至少给出3种方法

一、等比数列求和公式推导

由等比数列定义

a2=a1*q

a3=a2*q

a(n-1)=a(n-2)*q

an=a(n-1)*q 共n-1个等式两边分别相加得

a2+a3+...+an=[a1+a2+...+a(n-1)]*q

即 Sn-a1=(Sn-an)*q,即(1-q)Sn=a1-an*q

当q≠1时,Sn=(a1-an*q)/(1-q) (n≥2)

当n=1时也成立.

当q=1时Sn=n*a1

所以Sn= n*a1(q=1) ;(a1-an*q)/(1-q) (q≠1)。

二、等比数列求和公式推导

错位相减法

Sn=a1+a2 +a3 +...+an

Sn*q= a1*q+a2*q+...+a(n-1)*q+an*q= a2 +a3 +...+an+an*q

以上两式相减得(1-q)*Sn=a1-an*q

三、等比数列求和公式推导

数学归纳法

证明:(1)当n=1时,左边=a1,右边=a1·q0=a1,等式成立;

(2)假设当n=k(k≥1,k∈N*)时,等式成立,即ak=a1qk-1;

当n=k+1时,ak+1=ak·q=a1qk=a1·q(k+1)-1;

这就是说,当n=k+1时,等式也成立;

由(1)(2)可以判断,等式对一切n∈N*都成立。

参考资料:百度百科词条--等比数列求和公式

无穷等比数列求和公式是?

其前N项和公式为:

1、Sn=[a1(1-q^n)]/(1-q)(q≠1)

2、Sn=(a1-an×q)/(1-q)(q≠1)。

若q的绝对值大于等于1,则无穷等比数列的各项和不存在,不能用上面的公式。

例如:

扩展资料:

性质:

1、若m、n、p、q∈N*,且m+n=p+q,则am*an=ap*aq。

2、在等比数列中,依次每k项之和仍成等比数列。

3、若“G是a、b的等比中项”则“G^2=ab(G≠0)”。

4、若{an}是等比数列,公比为q1,{bn}也是等比数列,公比是q2,则{a2n},{a3n}…是等比数列。

5、若(an)为等比数列且各项为正,公比为q,则(log以a为底an的对数)成等差,公差为log以a为底q的对数。

6、等比数列前n项之和Sn=A1(1-q^n)/(1-q)=A1(q^n-1)/(q-1)=(A1q^n)/(q-1)-A1/(q-1)

参考资料:百度百科—无穷等比数列

等比数列求和公式

如果一个数列从第2项起,每一项与它的前一项的比等于同一个常数,这个数列就叫做等比数列。这个常数叫做等比数列的公比,公比通常用字母q表示。

(1)等比数列的通项公式是:

扩展资料:

等比数列是指如果一个 数列从第2项起,每一项与它的前一项的 比值等于同一个常数的一种数列,常用G、P表示。

这个常数叫做等比数列的 公比,公比通常用字母q表示(q≠0),等比数列a1≠ 0。其中{an}中的每一项均不为0。注:q=1 时,a n为 常数列。

参考资料:等比数列公式-百度百科

等比数列求和公式是什么?

求和公式

扩展资料

相关应用:

远望巍巍塔七层,红光点点倍加增,共灯三百八十一,请问尖头几盏灯?”意思是:一座7层塔共挂了381盏灯,且相邻两层中,下一层灯数是上一层灯数的2倍,则塔的顶层共有几盏灯。

每层塔所挂的灯的数量形成一个等比数列,公比q=2,我们设塔的顶层有a1盏灯。7层塔一共挂了381盏灯,S7=381,按照等比求和公式, 那么有a1乘以1-2的7次方,除以1-2,等于381.能解出a1等于3. 尖头必有3盏灯。

参考资料来源:百度百科-等比数列求和公式